Coupling of a two phase gas liquid compositional 3D Darcy flow with a 1D compositional free gas flow
نویسندگان
چکیده
A model coupling a three dimensional gas liquid compositional Darcy flow and a one dimensional compositional free gas flow is presented. The coupling conditions at the interface between the gallery and the porous medium account for the molar normal fluxes continuity for each component, the gas liquid thermodynamical equilibrium, the gas pressure continuity and the gas and liquid molar fractions continuity. This model is applied to the simulation of the mass exchanges at the interface between the repository and the ventilation excavated gallery in a nuclear waste geological repository. The spatial discretization is essentially nodal and based on the Vertex Approximate Gradient (VAG) scheme. Compared with classical nodal approaches such as the Control Volume Finite Element method, the VAG scheme has the advantage to avoid the mixture of different material properties and models in the control volumes located at the interfaces. The discrete model is validated using a quasi analytical solution for the stationary state, and the convergence of the VAG discretization is analysed for a simplified model coupling the Richards approximation in the porous medium and the gas pressure equation in the gallery.
منابع مشابه
Coupling of a two phase gas liquid 3D Darcy flow in fractured porous media with a 1D free gas flow
A model coupling a three dimensional gas liquid compositional Darcy flow in a fractured porous medium, and a one dimensional compositional free gas flow is presented. The coupling conditions at the interface between the gallery and the porous medium account for the molar normal fluxes continuity for each component, the gas liquid thermodynamical equilibrium, the gas pressure continuity and the ...
متن کاملFormulations of two phase liquid gas compositional Darcy flows with phase transitions
In this article, three formulations of two phase compositional Darcy flows taking into account phase transitions are compared. The first formulation is the so called natural variable formulation commonly used in reservoir simulation, the second has been introduced in [14] and uses the phase pressures, saturations and component fugacities as main unknowns, and the third is an extension to genera...
متن کاملCoupling compositional gas liquid Darcy and free gas flows at porous and free flow domains interface
This paper proposes an efficient splitting algorithm to solve coupled liquid gas Darcy and free gas flows at the interface between a porous medium and a free-flow domain. This model is compared to the reduced model introduced in [6] using a 1D approximation of the gas free flow. For that purpose, the gas molar fraction diffusive flux at the interface in the free-flow domain is approximated by a...
متن کاملEffects of coupling on turbulent gas-particle boundary layer flows at borderline volume fractions using kinetic theory
This study is concerned with the prediction of particles’ velocity in a dilute turbulent gas-solidboundary layer flow using a fully Eulerian two-fluid model. The closures required for equationsdescribing the particulate phase are derived from the kinetic theory of granular flows. Gas phaseturbulence is modeled by one-equation model and solid phase turbulence by MLH theory. Resultsof one-way and...
متن کاملDynamic and Deformation of a liquid Droplet in a Convective Two-Dimensional Laminar Flow
The objective of this research is to develop an accurate numerical method to be used in showing the deformation of a liquid fuel droplet in a convective field. To simultaneously solve the internal liquid droplet flow field as well as the external gas phase flow field, a nonstaggered rectangular grid system without any coordinate transformation is used. Transition from the gas field to the liqui...
متن کامل